(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__from(X) → cons(mark(X), from(s(X)))
a__length(nil) → 0
a__length(cons(X, Y)) → s(a__length1(Y))
a__length1(X) → a__length(X)
mark(from(X)) → a__from(mark(X))
mark(length(X)) → a__length(X)
mark(length1(X)) → a__length1(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(0) → 0
a__from(X) → from(X)
a__length(X) → length(X)
a__length1(X) → length1(X)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a__from(X) → cons(mark(X), from(s(X)))
a__length(nil) → 0'
a__length(cons(X, Y)) → s(a__length1(Y))
a__length1(X) → a__length(X)
mark(from(X)) → a__from(mark(X))
mark(length(X)) → a__length(X)
mark(length1(X)) → a__length1(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(0') → 0'
a__from(X) → from(X)
a__length(X) → length(X)
a__length1(X) → length1(X)
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
a__from(X) → cons(mark(X), from(s(X)))
a__length(nil) → 0'
a__length(cons(X, Y)) → s(a__length1(Y))
a__length1(X) → a__length(X)
mark(from(X)) → a__from(mark(X))
mark(length(X)) → a__length(X)
mark(length1(X)) → a__length1(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(0') → 0'
a__from(X) → from(X)
a__length(X) → length(X)
a__length1(X) → length1(X)
Types:
a__from :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
cons :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
mark :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
from :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
s :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
a__length :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
nil :: s:from:cons:nil:0':length:length1
0' :: s:from:cons:nil:0':length:length1
a__length1 :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
length :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
length1 :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
hole_s:from:cons:nil:0':length:length11_0 :: s:from:cons:nil:0':length:length1
gen_s:from:cons:nil:0':length:length12_0 :: Nat → s:from:cons:nil:0':length:length1
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
a__from,
mark,
a__length,
a__length1They will be analysed ascendingly in the following order:
a__from = mark
a__length < mark
a__length1 < mark
a__length = a__length1
(6) Obligation:
TRS:
Rules:
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__length(
nil) →
0'a__length(
cons(
X,
Y)) →
s(
a__length1(
Y))
a__length1(
X) →
a__length(
X)
mark(
from(
X)) →
a__from(
mark(
X))
mark(
length(
X)) →
a__length(
X)
mark(
length1(
X)) →
a__length1(
X)
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
s(
X)) →
s(
mark(
X))
mark(
nil) →
nilmark(
0') →
0'a__from(
X) →
from(
X)
a__length(
X) →
length(
X)
a__length1(
X) →
length1(
X)
Types:
a__from :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
cons :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
mark :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
from :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
s :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
a__length :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
nil :: s:from:cons:nil:0':length:length1
0' :: s:from:cons:nil:0':length:length1
a__length1 :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
length :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
length1 :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
hole_s:from:cons:nil:0':length:length11_0 :: s:from:cons:nil:0':length:length1
gen_s:from:cons:nil:0':length:length12_0 :: Nat → s:from:cons:nil:0':length:length1
Generator Equations:
gen_s:from:cons:nil:0':length:length12_0(0) ⇔ nil
gen_s:from:cons:nil:0':length:length12_0(+(x, 1)) ⇔ cons(gen_s:from:cons:nil:0':length:length12_0(x), nil)
The following defined symbols remain to be analysed:
a__length1, a__from, mark, a__length
They will be analysed ascendingly in the following order:
a__from = mark
a__length < mark
a__length1 < mark
a__length = a__length1
(7) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__length1.
(8) Obligation:
TRS:
Rules:
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__length(
nil) →
0'a__length(
cons(
X,
Y)) →
s(
a__length1(
Y))
a__length1(
X) →
a__length(
X)
mark(
from(
X)) →
a__from(
mark(
X))
mark(
length(
X)) →
a__length(
X)
mark(
length1(
X)) →
a__length1(
X)
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
s(
X)) →
s(
mark(
X))
mark(
nil) →
nilmark(
0') →
0'a__from(
X) →
from(
X)
a__length(
X) →
length(
X)
a__length1(
X) →
length1(
X)
Types:
a__from :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
cons :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
mark :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
from :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
s :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
a__length :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
nil :: s:from:cons:nil:0':length:length1
0' :: s:from:cons:nil:0':length:length1
a__length1 :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
length :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
length1 :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
hole_s:from:cons:nil:0':length:length11_0 :: s:from:cons:nil:0':length:length1
gen_s:from:cons:nil:0':length:length12_0 :: Nat → s:from:cons:nil:0':length:length1
Generator Equations:
gen_s:from:cons:nil:0':length:length12_0(0) ⇔ nil
gen_s:from:cons:nil:0':length:length12_0(+(x, 1)) ⇔ cons(gen_s:from:cons:nil:0':length:length12_0(x), nil)
The following defined symbols remain to be analysed:
a__length, a__from, mark
They will be analysed ascendingly in the following order:
a__from = mark
a__length < mark
a__length1 < mark
a__length = a__length1
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__length.
(10) Obligation:
TRS:
Rules:
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__length(
nil) →
0'a__length(
cons(
X,
Y)) →
s(
a__length1(
Y))
a__length1(
X) →
a__length(
X)
mark(
from(
X)) →
a__from(
mark(
X))
mark(
length(
X)) →
a__length(
X)
mark(
length1(
X)) →
a__length1(
X)
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
s(
X)) →
s(
mark(
X))
mark(
nil) →
nilmark(
0') →
0'a__from(
X) →
from(
X)
a__length(
X) →
length(
X)
a__length1(
X) →
length1(
X)
Types:
a__from :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
cons :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
mark :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
from :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
s :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
a__length :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
nil :: s:from:cons:nil:0':length:length1
0' :: s:from:cons:nil:0':length:length1
a__length1 :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
length :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
length1 :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
hole_s:from:cons:nil:0':length:length11_0 :: s:from:cons:nil:0':length:length1
gen_s:from:cons:nil:0':length:length12_0 :: Nat → s:from:cons:nil:0':length:length1
Generator Equations:
gen_s:from:cons:nil:0':length:length12_0(0) ⇔ nil
gen_s:from:cons:nil:0':length:length12_0(+(x, 1)) ⇔ cons(gen_s:from:cons:nil:0':length:length12_0(x), nil)
The following defined symbols remain to be analysed:
mark, a__from
They will be analysed ascendingly in the following order:
a__from = mark
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
mark(
gen_s:from:cons:nil:0':length:length12_0(
n46_0)) →
gen_s:from:cons:nil:0':length:length12_0(
n46_0), rt ∈ Ω(1 + n46
0)
Induction Base:
mark(gen_s:from:cons:nil:0':length:length12_0(0)) →RΩ(1)
nil
Induction Step:
mark(gen_s:from:cons:nil:0':length:length12_0(+(n46_0, 1))) →RΩ(1)
cons(mark(gen_s:from:cons:nil:0':length:length12_0(n46_0)), nil) →IH
cons(gen_s:from:cons:nil:0':length:length12_0(c47_0), nil)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__length(
nil) →
0'a__length(
cons(
X,
Y)) →
s(
a__length1(
Y))
a__length1(
X) →
a__length(
X)
mark(
from(
X)) →
a__from(
mark(
X))
mark(
length(
X)) →
a__length(
X)
mark(
length1(
X)) →
a__length1(
X)
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
s(
X)) →
s(
mark(
X))
mark(
nil) →
nilmark(
0') →
0'a__from(
X) →
from(
X)
a__length(
X) →
length(
X)
a__length1(
X) →
length1(
X)
Types:
a__from :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
cons :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
mark :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
from :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
s :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
a__length :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
nil :: s:from:cons:nil:0':length:length1
0' :: s:from:cons:nil:0':length:length1
a__length1 :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
length :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
length1 :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
hole_s:from:cons:nil:0':length:length11_0 :: s:from:cons:nil:0':length:length1
gen_s:from:cons:nil:0':length:length12_0 :: Nat → s:from:cons:nil:0':length:length1
Lemmas:
mark(gen_s:from:cons:nil:0':length:length12_0(n46_0)) → gen_s:from:cons:nil:0':length:length12_0(n46_0), rt ∈ Ω(1 + n460)
Generator Equations:
gen_s:from:cons:nil:0':length:length12_0(0) ⇔ nil
gen_s:from:cons:nil:0':length:length12_0(+(x, 1)) ⇔ cons(gen_s:from:cons:nil:0':length:length12_0(x), nil)
The following defined symbols remain to be analysed:
a__from
They will be analysed ascendingly in the following order:
a__from = mark
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__from.
(15) Obligation:
TRS:
Rules:
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__length(
nil) →
0'a__length(
cons(
X,
Y)) →
s(
a__length1(
Y))
a__length1(
X) →
a__length(
X)
mark(
from(
X)) →
a__from(
mark(
X))
mark(
length(
X)) →
a__length(
X)
mark(
length1(
X)) →
a__length1(
X)
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
s(
X)) →
s(
mark(
X))
mark(
nil) →
nilmark(
0') →
0'a__from(
X) →
from(
X)
a__length(
X) →
length(
X)
a__length1(
X) →
length1(
X)
Types:
a__from :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
cons :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
mark :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
from :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
s :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
a__length :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
nil :: s:from:cons:nil:0':length:length1
0' :: s:from:cons:nil:0':length:length1
a__length1 :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
length :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
length1 :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
hole_s:from:cons:nil:0':length:length11_0 :: s:from:cons:nil:0':length:length1
gen_s:from:cons:nil:0':length:length12_0 :: Nat → s:from:cons:nil:0':length:length1
Lemmas:
mark(gen_s:from:cons:nil:0':length:length12_0(n46_0)) → gen_s:from:cons:nil:0':length:length12_0(n46_0), rt ∈ Ω(1 + n460)
Generator Equations:
gen_s:from:cons:nil:0':length:length12_0(0) ⇔ nil
gen_s:from:cons:nil:0':length:length12_0(+(x, 1)) ⇔ cons(gen_s:from:cons:nil:0':length:length12_0(x), nil)
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_s:from:cons:nil:0':length:length12_0(n46_0)) → gen_s:from:cons:nil:0':length:length12_0(n46_0), rt ∈ Ω(1 + n460)
(17) BOUNDS(n^1, INF)
(18) Obligation:
TRS:
Rules:
a__from(
X) →
cons(
mark(
X),
from(
s(
X)))
a__length(
nil) →
0'a__length(
cons(
X,
Y)) →
s(
a__length1(
Y))
a__length1(
X) →
a__length(
X)
mark(
from(
X)) →
a__from(
mark(
X))
mark(
length(
X)) →
a__length(
X)
mark(
length1(
X)) →
a__length1(
X)
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
s(
X)) →
s(
mark(
X))
mark(
nil) →
nilmark(
0') →
0'a__from(
X) →
from(
X)
a__length(
X) →
length(
X)
a__length1(
X) →
length1(
X)
Types:
a__from :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
cons :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
mark :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
from :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
s :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
a__length :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
nil :: s:from:cons:nil:0':length:length1
0' :: s:from:cons:nil:0':length:length1
a__length1 :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
length :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
length1 :: s:from:cons:nil:0':length:length1 → s:from:cons:nil:0':length:length1
hole_s:from:cons:nil:0':length:length11_0 :: s:from:cons:nil:0':length:length1
gen_s:from:cons:nil:0':length:length12_0 :: Nat → s:from:cons:nil:0':length:length1
Lemmas:
mark(gen_s:from:cons:nil:0':length:length12_0(n46_0)) → gen_s:from:cons:nil:0':length:length12_0(n46_0), rt ∈ Ω(1 + n460)
Generator Equations:
gen_s:from:cons:nil:0':length:length12_0(0) ⇔ nil
gen_s:from:cons:nil:0':length:length12_0(+(x, 1)) ⇔ cons(gen_s:from:cons:nil:0':length:length12_0(x), nil)
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_s:from:cons:nil:0':length:length12_0(n46_0)) → gen_s:from:cons:nil:0':length:length12_0(n46_0), rt ∈ Ω(1 + n460)
(20) BOUNDS(n^1, INF)